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Abstract
In this paper, we clarify the relation between Manin’s quantum theta function
and Schwarz’s theta vector. We do this in comparison with the relation between
the kq representation, which is equivalent to the classical theta function, and the
corresponding coordinate space wavefunction. We first explain the equivalence
relation between the classical theta function and the kq representation in
which the translation operators of the phase space are commuting. When
the translation operators of the phase space are not commuting, then the kq

representation is no longer meaningful. We explain why Manin’s quantum
theta function, obtained via algebra (quantum torus) valued inner product of
the theta vector, is a natural choice for the quantum version of the classical theta
function. We then show that this approach holds for a more general theta vector
containing an extra linear term in the exponent obtained from a holomorphic
connection of constant curvature than the simple Gaussian one used in Manin’s
construction.

PACS numbers: 02.30.Gp, 03.70.+k, 11.10.Nx

1. Introduction

Classical theta functions can be regarded as state functions on classical tori, and have played an
important role in the string loop calculation [1, 2]. Its quantum version on the noncommutative
tori has been discussed mainly by Manin [3–5] and Schwarz [6, 7]. In the physics literature,
it has been discussed in the context of noncommutative soliton [8].

In noncommutative field theory, one can find nontrivial soliton solutions in terms of
projection operators [8–10]. Before this development, Boca [11] had constructed projection
operators on the Z4-orbifold of noncommutative two torus. There it was also shown that
these projection operators can be expressed in terms of the classical theta functions, of which
certain classical commuting variables are replaced with quantum operators. Elicited from and
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generalizing Boca’s result, Manin [4, 5] explicitly constructed a quantum theta function, the
concept of which he introduced previously [3]. In both Boca’s and Manin’s constuctions, the
main pillars were the algebra valued inner product that Rieffel [12] used in his classic work
on projective modules over noncommutative tori. One major difference is that in Manin’s
construction of the quantum theta function, the so-called theta vector that Schwarz introduced
earlier [6, 7] was used for the inner product, while in Boca’s construction the eigenfunctions
of Fourier transform were used.

Both the classical theta function [13] and the kq representation in the physics literature
[14, 15] have been known for a long time. The kq representation is a transformation of a
wavefunction on (real n-dimensional) coordinate space to a function on (real 2n-dimensional)
phase space consisting of (quasi-)coordinates and (quasi-)momenta. However, the translation
operators in the kq representation acting on the lattice of the phase space are commuting. When
the lattice of the phase space is periodic, one can identify functions possessing translational
symmetry on the lattice with the classical theta functions on tori. When the translation operators
of the coordinate and momentum directions are not commuting, the kq representation and the
classical theta function lose their meaning. One has to find other ways of representing
periodic functions on the lattice of the noncommuting phase space. When the algebras are
noncommutative, the algebra valued inner product is a good fit for constructing operators out
of state functions. In the case at hand, the coordinates of the phase space are noncommuting
and so is the algebra based on them. And the functions on the noncommuting phase space can
be regarded as operators.

In fact, the theta vector corresponds to a state on a quantum torus, and the quantum theta
function defined by Manin [4, 5] is an operator acting on the states (module) on a quantum
torus. Therefore, it is very natural to use the algebra valued inner product to build the quantum
theta functions from the theta vectors over noncommutative tori. The classical theta function
possesses a certain symmetry property under the lattice translation, and Manin’s quantum
theta function is constructed in such a way that this symmetry property is maintained as a
functional relation, which it should satisfy.

The organization of the paper is as follows. In section 2, we review the classical theta
function briefly, then explain the relationship between the classical theta function and the kq

representation. In section 3, we first review the theta vectors on quantum tori, then explain how
the concept of Manin’s quantum theta function emerges from algebra valued inner product of
a state function. In section 4, we provide further support for Manin’s approach by applying
it to the case of a more general theta vector containing a constant satisfying the holomorphy
conditon, and show that the new quantum theta function also satisfies Manin’s functional
relation for the consistency requirement. In section 5, we conclude with a discussion.

2. Classical complex tori and kq representation

In this section, we discuss the relationship between the classical theta function and the so-
called kq representation [14, 15]. We first look into how the classical theta function emerges
from Gaussian function via Fourier-like transformation. We then show that the transformed
function is exactly equivalent to the kq representation known in the physics literature.

We now recall the property of the classical theta function briefly, then show how Gaussian
function can be transformed into the classical theta function. The classical theta function � is
a complex valued function on C

n satisfying the following relation:

�(z + λ′) = �(z) for z ∈ C
n, λ′ ∈ �′, (1)

�(z + λ) = c(λ) eq(λ,z)�(z) for λ ∈ �, (2)
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where �′ ⊕� ⊂ C
n is a discrete sublattice of rank 2n split into the sum of two sublattices of

rank n, isomorphic to Z
n, and c : � → C is a map and q : � × C → C is a biadditive pairing

linear in z.
The function �(z, T ) satisfying (1) and (2) is defined as

�(z, T ) =
∑
k∈Z

n

eπ i(kt T k+2kt z) (3)

where T is a symmetric complex valued n×n matrix whose imaginary part is positive definite.
Let fT (x) be a Gaussian function defined below using the same T above.

fT (x) = eπ ixt T x for x ∈ R
n. (4)

Then f̃ T (ρ, σ ) is defined as [6]

f̃ T (ρ, σ ) ≡
∑
k∈Z

n

e−2π iρt kfT (σ + k) (5)

where ρ, σ ∈ R
n. When we fix σ , this is a Fourier transformation between k and ρ. Then

from (5), we get �(z, T ) with a substitution z = T σ − ρ as follows:

f̃ T (ρ, σ ) =
∑
k∈Z

n

eπ i((σ+k)t T (σ+k)−2ρt k) (6)

= eπ iσ t T σ�(T σ − ρ, T ). (7)

We can do the same procedure for a general Gaussian function, fT,c(x), as follows:

fT,c(x) = eπ i(xt T x+2ct x) (8)

where c ∈ C
n. Then,

f̃ T ,c(ρ, σ ) ≡
∑
k∈Z

n

e−2π iρt kfT ,c(σ + k) (9)

= eπ i(σ t T σ+2ct σ )�(T σ − ρ + c, T ). (10)

In this case we get �(z, T ) with a substitution z = T σ − ρ + c.

The transformation (5) exactly matches the transformation used in defining the kq

representation which has already appeared in the physics literature [14, 15].
The kq representation which defines symmetric coordinates k (quasimomentum) and

q (quasicoordinate) is a transformation from a wavefunction in position space into a
wavefunction in both k and q, which we denote as C(k, q). C(k, q) is defined by [15]

C(k, q) =
( a

2π

) 1
2
∑
l∈Z

eikalψ(q − la) (11)

where a is a real number (lattice constant), and the ‘coordinates’ of the phase space (k, q) run
over the intervals −π

a
< k � π

a
and − a

2 < q � a
2 . In this representation, the displacement

operators eimbx, einap in the x and p directions, where [x, p] = i, b = 2π
a

and m, n ∈ Z,
are mutually commuting, and thus they simply become simple multiplication by the function
eim 2π

a
q and einak , respectively [15].
Comparing (11) with (5), it is not difficult to see that C(k, q) corresponds to f̃ T (ρ, σ )

in our previous discussion with a correspondence (ρ ↔ k) and (σ ↔ q). Furthermore, from
(11) it can be easily checked that

C

(
k +

2π

a
, q

)
= C(k, q), (12)
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C(k, q + a) = eikaC(k, q). (13)

These exactly match (1) and (2), the property of the classical theta function. We can thus say
that the classical theta function corresponds to the kq representation, C(k, q), while the
pre-transformed Gaussian function fT (x) for the classical theta function corresponds to
the wavefunction ψ(x) for the kq representation. This correspondence is only valid when
the lattice translation operators of the phase space (x, p) are mutually commuting.

3. Theta vectors on quantum torus and algebra valued inner
product for a passage to quantum theta functions

In this section, we first discuss theta vectors on quantum torus and define the algebra (quantum
torus) valued inner product on the modules over the quantum torus. Then we introduce the
concept of Manin’s quantum theta function [5] via the algebra valued inner product.

A noncommutative d-torus T d
θ is a C∗-algebra generated by d unitaries U1, . . . , Ud subject

to the relations

UαUβ = e2π iθαβ UβUα, for 1 � α, β � d, (14)

where θ = (θαβ) is a skew symmetric matrix with real entries.
Let L be all derivations on T d

θ , i.e.,

L = {δ|δ : T d
θ → T d

θ , which is linear, and δ(fg) = δ(f )g + f δ(g)}.
Then L has a Lie algebra structure since [δ1, δ2] = δ1δ2 − δ2δ1 ∈ L. We can also see that L
is isomorphic to R

d . A noncommutative torus is said to have a complex structure if the Lie
algebra L = R

d acting on T d
θ is equipped with the complex structure that we explain below.

A complex structure on L can be considered a decomposition of complexification L
⊕

iL of
L into a direct sum of two complex conjugate subspace L1,0 and L0,1. We denote a basis in L
by δ1, . . . , δd, and a basis in L0,1 by δ̃1, . . . , δ̃n where d = 2n. One can express δ̃α in terms of
δj as δ̃α = tαj δj , where tαj is a complex n × d matrix.

Let ∇j (for j = 1, . . . , d) be a constant curvature connection on a T d
θ -module E . A

complex structure on E can be defined as a collection of C linear operators 	̃1, . . . ,	̃n

satisfying

	̃α (a · f ) = a	̃αf + (δ̃αa) · f (15)

[	̃α,	̃β] = 0 (16)

where a ∈ T d
θ and f ∈ E [6].

These two conditions are satisfied if we choose	̃α as

∇̃α = tαj∇j for α = 1, . . . , n, j = 1, . . . , d. (17)

A vector f ∈ E is holomorphic if

	̃αf = 0, for α = 1, . . . , n. (18)

A finitely generated projective module over T d
θ can take the form S(Rp × Z

q × F) where
2p + q = d and F is a finite Abelian group [12]. Here, S(M) denotes the Schwartz functions
on M which rapidly decay at infinity.

Here, we consider the case that the module is given by S(Rn), and choose a constant
curvature connection ∇ on S(Rn) such that

(	α,	n+α) =
(

∂

∂xα
,−2π iσαxα

)
for α = 1, . . . , n, (19)
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where σα are some real constants, xα are coordinate functions on R
n and repeated indices are

not summed. Then the curvature [	i ,	j ] = Fij satisfies Fα,n+α = 2π iσα, Fn+α,α = −2π iσα

and all others are zero. Now, we change the coordinates such that t = (tαj ) becomes

t = (1, τ ), (20)

where 1 is an identity matrix of size n and τ is an n × n complex valued matrix.
Then, the holomorphic vector f satisfying (18) can be expressed as ∂

∂xα
−

∑
β

2π iTαβxβ

 f = 0, (21)

where the n × n matrix T = (Tαβ) is given as follows. Condition (16) requires that the matrix
T be symmetric, Tαβ = Tβα , and it is given by Tαβ = ταβσβ, α, β = 1, . . . , n, with the repeated
index β not summed. Up to a constant we get,

f (x1, . . . , xn) = eπ ixαTαβxβ

. (22)

If Im T is positive definite, then f belongs to S(Rn). The vectors satisfying the holomorphy
condition (18) are called the theta vectors [6].

If a constant in C
n is added to a given connection 	̃, it still yields the same constant

curvature. Then the holomorphy condition (18) becomes [7, 16]

(	̃α − 2π icα)fc = 0, for α = 1, . . . , n (23)

for fc ∈ S(Rn), giving the following condition: ∂

∂xα
−

∑
β

2π iTαβxβ − 2π icα

 fc = 0, (24)

whose solution we get

fc(x) = eπ ixαTαβxβ +2π icαxα

. (25)

Now, we consider the algebra valued inner product on a bimodule after Rieffel [12]. Let
M be any locally compact Abelian group, M̂ be its dual group and G ≡ M × M̂ . Let π be a
representation of G on L2(M) such that

πxπy = α(x, y)πx+y = α(x, y)α(y, x)πyπx for x, y ∈ G (26)

where α is a map α : G × G → C
∗ satisfying

α(x, y) = α(y, x)−1, α(x1 + x2, y) = α(x1, y)α(x2, y),

and α denotes the complex conjugation of α.
Let D be a discrete subgroup of G. We define S(D) as the space of Schwartz functions on

D. For � ∈ S(D), it can be expressed as � = ∑
w∈D �(w)eD,α(w) where eD,α(w) is a delta

function with support at w and obeys the following relation:

eD,α(w1)eD,α(w2) = α(w1, w2)eD,α(w1 + w2). (27)

For Schwartz functions f, g ∈ S(M), the algebra (S(D)) valued inner product is defined as

D〈f, g〉 ≡
∑
w∈D

D〈f, g〉(w)eD,α(w) (28)

where

D〈f, g〉(w) = 〈f, πwg〉.
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Here, the scalar product of the type 〈f, p〉 used above for f, p ∈ L2(M) denotes the following:

〈f, p〉 =
∫

f (x1)p(x1) dµx1 for x = (x1, x2) ∈ M × M̂, (29)

where µx1 represents the Haar measure on M and p(x1) denotes the complex conjugation of
p(x1). Thus, the S(D)-valued inner product can be represented as

D〈f, g〉 =
∑
w∈D

〈f, πwg〉eD,α(w). (30)

Manin’s quantum theta function �D [4, 5] was defined via algebra valued inner product
up to a constant factor,

D〈fT , fT 〉 ∼ �D, (31)

where fT used in the construction was a simple Gaussian theta vector

fT = eπ ixt
1T x1 , x1 ∈ M, (32)

with T be an n × n complex valued matrix. Manin required that the quantum theta function
�D defined in this way should satisfy the following condition under translation:

∀g ∈ D, CgeD,α(g)x∗
g (�D) = �D (33)

where Cg is an appropriately given constant, and x∗
g is a ‘quantum translation operator’ defined

as

x∗
g (eD,α(h)) = X (g, h)eD,α(h) (34)

with some commuting function X (g, h) for g, h ∈ D. Requirement (33) can be regarded as
the quantum counterpart of the second property of the classical theta function, (2).

4. Quantum theta functions—extended to holomorphic connections with constants

In this section, we show that Manin’s approach for quantum theta function also holds for the
case of a theta vector obtained from more general holomorphic connections with constants.

As in the classical theta function case, we first introduce an n-dimensional complex
variable x ∈ C

n with complex structure T explained in the previous section as

x ≡ T x1 + x2 (35)

where x = (x1, x2) ∈ M × M̂ . On the basis of the defining concept for quantum theta
function (31), Manin defined the quantum theta function �D as

D〈fT , fT 〉 = 1√
2n det(Im T )

�D (36)

with fT given by (32).
We begin with the S(D)-valued inner product (31) with a more general theta vector fT,c

which appeared in [7, 16].

D〈fT,c, fT,c〉 =
∑
h∈D

〈fT,c, πhfT,c〉eD,α(h) (37)

where

fT,c(x1) = eπ ixt
1T x1+2π ict x1 , c ∈ C

n, x1 ∈ M, (38)

and T is the complex structure mentioned before. Here, we define π of G on L2(M) as follows:

(π(y1,y2)f )(x1) = e2π ixt
1y2+π iyt

1y2f (x1 + y1), for x, y ∈ G = M × M̂. (39)
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Then the cocycle α(x, y) in (26) is given by α(x, y) = eπ i(xt
1y2−yt

1x2). From (29) and (39), the
algebra valued inner product (37) can be written as

D〈fT,c, fT,c〉 =
∑
h∈D

〈fT,c, πhfT,c〉eD,α(h)

=
∑
h∈D

∫
R

n

dµx1fT,c(x1)(πhfT,c)(x1)eD,α(h)

≡
∑
h∈D

∫
R

n

dµx1 e−π[q(x1)+lh,c(x1)+C̃h,c]eD,α(h) (40)

where q(x1), lh,c(x1), C̃h,c are defined by

q(x1) = 2xt
1(Im T )x1,

lh,c(x1) = 2ixt
1(T h1 + h2 − 2i(Im c)), (41)

C̃h,c = iht
1(T h1 + h2 + 2c).

Denoting

λh,c ≡ i

2
(Im T )−1(h∗ − 2i(Im c)),

one can check that

q(x1) + lh,c(x1) = q(x1 + λh,c) − q(λh,c).

Thus, the algebra valued inner product (40) can be written as

D〈fT,c, fT,c〉 =
∑
h∈D

e−π(C̃h,c−q(λh,c))eD,α(h)

∫
R

n

dµx1 e−πq(x1+λh,c). (42)

Since
∫

R
n dµx1 e−πq(x1+λh,c) = 1/

√
det q, the above expression can be rewritten as

D〈fT,c, fT,c〉 = 1√
2n det(Im T )

∑
h∈D

e−π(C̃h,c−q(λh,c))eD,α(h) (43)

and we define our quantum theta function �D,c as

D〈fT,c, fT,c〉 ≡ 1√
2n det(Im T )

�D,c. (44)

The quantum theta function defined above is evaluated as

�D,c =
∑
h∈D

e−π(C̃h,c−q(λh,c))eD,α(h)

=
∑
h∈D

e−π[ 1
2 (ht−2i(Im c)t )(Im T )−1(h∗−2i(Im c))+2iht

1 (Re c)]eD,α(h). (45)

Let x∗
g,c be a ‘quantum translation operator’ defined by

x∗
g,c(eD,α(h)) ≡ e−πX(g,h)eD,α(h), (46)

where X(g, h) is given by

X(g, h) = gt (Im T )−1h∗ + 2(Im c)t (Im T )−1(Im c).

Then, for any element g in D the above quantum theta function �D,c satisfies the following
relation:

Cg,ceD,α(g)x∗
g,c(�D,c) = �D,c, (47)
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where

Cg,c ≡ e− π
2 Hc(g,g)

and

Hc(g, g) = (g − 2i(Im c))t (Im T )−1(g∗ − 2i(Im c)) + 4igt
1(Re c). (48)

To prove relation (47) we first note that from (45) and (48) our quantum theta function �D,c

can be expressed as

�D,c =
∑
h∈D

e− π
2 Hc(h,h) eD,α(h). (49)

Thus the left-hand side of the functional relation (47) can be written as

Cg,ceD,α(g)x∗
g,c(�D,c) = e− π

2 Hc(g,g)eD,α(g)x∗
g,c

(∑
h∈D

e− π
2 Hc(h,h)eD,α(h)

)
=

∑
h∈D

e− π
2 Hc(g,g) e− π

2 Hc(h,h) e−πX(g,h)eD,α(g)eD,α(h).

Then using the cocycle relation (27)

eD,α(g)eD,α(h) = α(g, h)eD,α(g + h) = eπ i Im(gt (Im T )−1h∗)eD,α(g + h),

we get

e− π
2 Hc(g,g) e− π

2 Hc(h,h) e−πX(g,h) eπ i Im(gt (Im T )−1h∗) = e− π
2 Hc(g+h,g+h),

proving relation (47).

5. Conclusion

In this paper we explained how Manin’s quantum theta functions emerge naturally from the
state vectors on quantum (noncommutative) torus via the algebra valued inner product.

The theta vectors can be regarded as invariant state vectors under parallel transport on
the noncommutative torus equipped with complex structures. However, they are not like the
classical theta functions which are the state vectors (holomorphic sections of line bundles)
over classical tori. The classical theta functions or kq representations are functions over the
(complex n or real 2n dimensional) phase space consisting of coordinates and their canonical
momenta, while the theta vectors are state functions over (real n dimensional) coordinates
only.

In order to construct a quantum version of classical theta function, we need to build an
operator function over the (real 2n dimensional) quantum phase space. We do this with a
(commuting) state function via the algebra valued inner product. Thus the quantum theta
function obtained via the algebra valued inner product from the theta vector (a function over
commuting variables) can be regarded as a quantum version of the classical theta function or
the kq representation.

In conclusion, we can say that the quantum theta function is a quantum version of the
classical theta function which is equivalent to the kq representation, while the theta vector
corresponds to a wavefunction over commuting coordinates, and the wavefunction in turn
corresponds to the pre-transformed function for the kq representation.
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